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ABSTRACT With the advancement of the wood processing industry, the demand for the detection of surface
defects in wood has become increasingly urgent. The application of automated production technology has
enhanced the efficiency and precision of wood processing, which can significantly impact product quality
and competitiveness. However, current methods for detecting surface defects in wood suffer from issues such
as low detection accuracy, high computational complexity, and poor real-time performance. In response to
these challenges, this paper proposes a high-precision, lightweight, real-time wood surface defect detection
method based on YOLO(GBCD-YOLO) model. Firstly, the Ghost Bottleneck is introduced to improve
the computational efficiency and inference speed of deep neural networks. Furthermore, the BiFormer is
incorporated in the neck to enhance the performance of natural language processing tasks. Simultaneously,
CARAFE is utilized as an upsampling replacement to enhance perceptual and capture abilities for details.
In addition, the Dynamic Head is introduced to enhance the method’s flexibility and generalization ability,
and the loss function is replaced with complete intersection over union (CIoU). The proposed method was
evaluated using an optimized dataset and the YOLOv5s model was chosen as the baseline. The experimental
results show that compared with the original YOLOv5s, the mAP (0.5) has been improved by 13.45%,
reaching 88.72%. The mAP (0.5:0.95) increased by 11.95%, and FPS increased by 6.25%. In addition, the
parameter of the improved model has been reduced by 15.49%. These results indicate that the proposed
GBCD-YOLO improves the real-time detection performance of wood surface defects.

INDEX TERMS Small target detection, wood defect, deep learning, transformer, YOLOv5.

I. INTRODUCTION
Surface defects in wood have a significant impact on wood
processing, and the smoothness of the wood surface also
affects its value. However, due to the different growth
environments and processing methods of natural wood,
surface defects such as cracks, dead knots, live knots, and
resin are inevitable. The identification of surface defects
in wood has important implications for assessing wood
quality and assisting in fine wood processing. At present, the
categorization of items within the wood board manufacturing
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process continues to depend on human expertise, resulting in
challenges such as excessive workload, limited examination
efficacy, and an elevated proportion of erroneous identifica-
tions. Therefore, developing an efficient and accurate method
of detecting wood surface defects is an effective measure to
improve the quality of wood board production.

The advancement of artificial intelligence has propelled
object detection technology based on deep learning to
remarkable heights in diverse sectors, including production
and processing. Deep learning algorithms have become
essential tools in the field of wood surface defect detection,
which is currently receiving more attention because of its
practical significance.
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In the realm of computer vision algorithms applied to
wood surface defect detection, two primary types have been
utilized: two-stage and single-stage detection methods. In the
early stages of object detection, the predominate approach
involved a two-stage process. A typical representative is the
R-CNN series of methods, such as R-CNN [1], Fast R-
CNN [2], Faster R-CNN [3], and Mask R-CNN [4]. These
techniques start with a set of candidate boxes generated
by region creation algorithms, which are subsequently put
through feature extraction and classification procedures. The
two-stage detection methods gained prominence in the field
of object detection due to their high accuracy. On the other
hand, single-stage detection techniques have begun to appear
with the introduction of deep learning, providing a fresh
perspective on object detection problems. Representative
options for single level detection algorithms include YOLO
series (such as YOLOv1 [5], YOLO9000 [6], YOLOv3 [7],
YOLOv4 [8], YOLOv5 [9]), SSD series (such as SSD [10],
R-SSD [11], FSSD [12], and DSSD [13]), and EfficientDet
[14]. The single-stage algorithm uses a single neural network
to complete the entire detection process. The advantage of
a single stage detector is its fast-processing speed, which is
suitable for real-time applications. Both single-stage and two-
stage algorithms play important roles in the field of object
detection.

In the past few years, many researchers have investigated
methods for detecting various surface defect objects on
solid wood using deep learning. Fan et al. [15] utilized
Faster R-CNN for detecting defects in solid wood, achiev-
ing a detection accuracy of 95% for woodworm holes.
Nevertheless, the two-stage detection algorithm based on
Faster R-CNN sacrifices real-time performance, thereby
improving the accuracy of the algorithm but failing to
fulfill the realistic real-time demands. With a 91.17%
identification accuracy, Chacon and Alons [16] employed
a fuzzy self-organizing neural network as a classifier for
the detection of wood surface defects. Although accuracy
meets requirements, detection time cannot yet satisfy the
demands of the production line. Qi and Mu [17] obtained
internal images of wood using X-ray detection and utilized
artificial neural network algorithms to identify wood defects.
In contrast, the modeling process of artificial neural networks
is complex, with a high number of training parameters
and long training time. Ye [18] employed the LBP feature
extraction algorithm to detect decay, woodworm, and inden-
tation defects on solid wood surfaces. Unfortunately, the
resulting detection box regions suffer from misclassification
and omission issues. Tsung-Yi et al. introduced RetinaNet in
2017 [19], which addresses the issue of imbalanced positive
and negative samples in object detection by incorporating
a loss function named focal loss. Furthermore, Reis and
colleagues proposed YOLOv8 [20] in 2023, which builds
upon the YOLO algorithm. YOLOv8 enhances the feature
expression in detecting small targets, employing a multi-
scale fusion approach and incorporating a data augmentation
strategy.

However, as shown in FIGURE 1, the current research on
wood defects, particularly complex texture and blurry clarity
defects, poses a number of challenges. In particular, there is
relatively little research on improving detection speed and
real-time algorithms. It is crucial to address this issue, as rapid
and accurate detection of wood defects is essential for the
efficient operation of production lines.

FIGURE 1. Typical wood defects.

The main contributions of this article can be summed up as
follows in order to address the problems mentioned above:

1. In order to enhance computational efficiency and
inference speed and achieve real-time performance, this paper
introduces a lightweight Ghost Bottleneck to reduce compu-
tational burden and resource consumption while maintaining
high precision.

2. BiFormer [21], which combines Transformers and
feature pyramids in the neck, was incorporated to improve the
performance of natural language processing tasks, extracting
more spatial feature information and further enhancing
detection accuracy.

3. Traditional upsampling operations have been replaced
with the CARAFE [22], a superior upsampling method
that focuses on capturing fine-grained details in images,
preserving and refining them to enhance the model’s ability
to detect subtle defects.

4. To enhance model flexibility and generalizability,
we introduce a Dynamic Head [23] structure, allowing for
dynamic adjustments based on the shape and scale of the
target. This enables the effective detection of wood defects
of different sizes and shapes.

5. In order to improve the sensitivity to small objects and
accurately reflect the similarities between targets, the loss
function was replaced with complete intersection over union
(CIoU) [24].

The rest of this paper is organized as follows: Section II
introduces the original YOLOv5s model and its improve-
ments, which is the proposed GBCD-YOLO. Section III
introduces the experiment preparation and analyses the
results of the experiment. Finally, the main conclusions are
drawn in Section IV.

II. PRINCIPLE AND METHOD IMPROVEMENT
A. NETWORK STRUCTURE OF YOLOv5
The YOLO algorithm has become one of the most famous
object detection algorithms due to its efficiency, high
accuracy, and lightweight. YOLOv5 was launched by Glenn
Jocher in May 2020 using the Python framework. Currently,
the YOLO family has launched YOLOv8 in January 2023.
However, YOLOv8 is not ideal for detecting low resolution
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TABLE 1. Parameter settings for depth and width of YOLOv5 model of
four different models.

objects, as it may not accurately detect small objects and
requires a large number of samples and computing resources
during training. Moreover, considering the outstanding prac-
tical performance of YOLOv5, we have decided to further
enhance it by building on its existing framework. Currently,
there are four versions of the YOLOv5 network models:
YOLOv5s, YOLOv5m YOLOv5l and YOLOv5x. The depth
and width parameters of four YOLOv5 versions are shown in
TABLE 1. YOLO v5s is the model with the smallest network
depth (the number of layers in network architecture) and
width (the number of parameters and computational load of
the network), while the other three models are products that
have been deepened and expanded on the basis of YOLOv5s.
YOLOv5s balances model size and accuracy to make it
suitable for scenarios with limited computing resources or
critical real-time performance.

In this paper, YOLOv5s was selected as the baseline. The
image input, backbone network, neck and output are the four
main parts of the YOLOv5s network model. Image input
is the initial stage of passing input images into the model.
The backbone network forms the core of the architecture
and extracts hierarchical features from the input images.
The neck component connects the backbone network and
the output layer for further fusion and feature refinement.
Finally, the output detection module generates predictions
by processing the refined features of the neck component.
To achieve a balance between accuracy and speed, YOLOv5s
has been carefully designed for real-time applications with
limited computing resources. It adopts advanced technologies
such as anchor free detection and focus loss to improve
object detection performance. In YOLOv5s, the anchor box
loss function is a generalized intersection over union (GIoU)
[25], which improves the accuracy of anchor box prediction.
Additionally, a weighted non-maximum suppression (NMS)
[26] operation is employed to filter target anchor boxes,
further enhancing the precision of object detection. These
modifications contribute to the overall effectiveness and
reliability of the output detection head in YOLOv5s.

B. THE IMPROVED YOLO MODEL(GBCD-YOLO)
The initial YOLOv5s algorithm used a large number of
Conv (convolutional layer) and Conv3 × 3(convolutional
layers with 3 × 3 filters) convolutional structures in its
backbone network and feature pyramid. Therefore, it leads
to high parameter counts and slower detection speeds.
However, in regard to the actual production of wood panels
in factory workshops, achieving defect detection becomes a
very challenging.

In order to meet the requirements for rapid detection of
defects on the surface of wood, the proposed GBCD-YOLO
method has made the following improvements to YOLOv5s:
Firstly, the lightweight Ghost Bottleneck is introduced to
improve the computational efficiency and inference speed
of deep neural networks. Furthermore, the BiFormer is
incorporated in the neck to enhance the performance of nat-
ural language processing tasks. Simultaneously, CARAFE is
utilized as an upsampling replacement to enhance perceptual
and capture abilities for details. In addition, the Dynamic
Head is introduced to enhance the method’s flexibility and
generalization ability, and the loss function is replaced with
CIoU.

Overall, the proposed method combines dataset con-
struction, model architecture modification, loss function
optimization, and integration of detection method to enhance
the detection of wood surface defects.

1) LIGHTWEIGHT GHOST BOTTLENECK
The lightweight Ghost Bottleneck is a technique used to
optimize neural network architecture. Reduce the complexity
of the model by introducing ghost convolutional layers and
bottleneck structures, thereby reducing computational and
memory consumption while maintaining performance.

FIGURE 2. The ordinary convolution and the ghost convolution.

Compared to traditional convolution, the Ghost Net [27]
follows a two-step process. As depicted in FIGURE 2, Ghost
Net first utilizes regular convolution to obtain feature maps
with reduced channels. Then, it employs a cost-effective
operation to generate additional feature maps. A new output
is created by concatenating these various feature maps. The
Ghost module’s main convolution allows for customized
kernel sizes, unlike the widely used 1 × 1 pointwise
convolution. After processing features across channels using
pointwise convolution, depth convolution is used to handle
spatial information. Additionally, to reduce the computational
requirements, the Ghost module uses the concatenation
approach. Instead of using a bottleneck structure, our work
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uses a lightweight Ghost Bottleneck. The FIGURE 3 depicts
the Ghost construction that was replaced.

FIGURE 3. Replaced Ghost series modules: (A) C3Ghost (B) GhostConv (C)
Ghost Bottleneck.

FIGURE 4. The overall architecture of BiFormer and details of a BiFormer
block.

2) BIFORMER AND BI-LEVEL ROUTING ATTENTION
MECHANISM
The visual Transformer model BiFormer was proposed by
Zhu et al. [21]. As shown in FIGURE 4, it is a new
universal visual converter BiFormer. Follow the latest visual
converters [28], [29], [30] and uses a four-level pyramid
structure. Specifically, in the stage i, overlapping patch
embedding is used, and in the second to fourth stages, patch
merging modules [31], [32] are used to reduce the input
spatial resolution while increasing the number of channels.
Then, Ni consecutive BiFormer blocks are used to transform
features. In each BiFormer block, use 3 at the beginning ×

3 deep convolutions to implicitly encode relative position
information. Then, the BRA module with an extension ratio
of e and the 2-layer MLP module are sequentially applied
for cross positional relationship modeling and positional
embedding, respectively.

In the visual converter, BiFormer implements a two-
layer routing attention mechanism. By allowing information
interaction between the local and global attention levels,
it improves feature representation. While the local attention
level is used to capture the image’s specifics and local
features, the global attention level is used to capture the
image’s overall structure and global semantic information.
Better management of global and local relationships in

images is made possible by the introduction of this bi-level
routing attention mechanism, which successfully captures the
structural and detailed aspects of the image. Dramatically
increases the effectiveness of image classification tasks.

FIGURE 5. The structure of a Bi-level routing.

As shown in FIGURE 5, the query used to calculate
the keywords’ weighted relevance is Q. K stands for the
keywords or identifiers that are used as a means of matching
or information provision. V is the value linked to the keyword
data and the query results. The factor C is employed to
modify attention allocation and regulate attention focus. The
adjacencymatrix A is used to show how semantically relevant
two regions are to each other. O is the output of the attention
mechanism.

A convolutional neural network is used by the BiFormer
model to first extract features from the input image during
training, producing a feature map with dimensions of H ×

W × C . Subsequently, along the channel dimension C, this
feature map is divided into r sub-feature maps of size H ×

W × C/r .
In the global attention part, the BiFormer model maps

each sub-feature map to a vector of dimension d through two
fully connected layers. To get a weight vector, it computes
how similar this vector is to every other vector. The global
relationship is then represented by the output vector, which is
obtained by weighting and summing the sub-feature maps in
accordance with this weight vector.

In the local attention part, the BiFormer model creates a
local feature map by applying two convolutional layers to
each sub-feature map. After that, another weight vector is
obtained by calculating the similarity between this feature
map and all other feature maps. An output vector that
represents the local features is produced by weighting and
adding the feature maps in accordance with this weight
vector.

In brief, every sub-feature map is converted into a semantic
vector that symbolizes the global relationship through the
application of the global routing attention mechanism. Local
features are simultaneously represented by a semantic vector
created by the local routing attention mechanism. The output
vectors of local attention and global attention are finally
combined by the BiFormer model. These vectors are mapped
to the target object’s class and position data via fully
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FIGURE 6. The overall framework of CARAFE.

connected layers. The target object’s class and coordinates
are provided by the probability output, which is produced by
applying the softmax function.

The BiFormer model has been shown through a number of
studies to be effective at detecting small objects [33], [34].
It is able to concurrently focus on the local characteristics
and global relationships of the detection target because of
the introduction of the Bi-level routing attention mechanism.
This makes it possible to distinguish defective targets from
the background more effectively.

In summary, the dataset utilized in this study and the
BiFormer model have a high degree of compatibility, which
should lead to a notable increase in accuracy.

3) CARAFE: LIGHTWEIGHT UPSAMPLING OPERATOR
Feature recombination was used to perform the upsampling.
This entails taking the dot product between the upsampling
kernel and the corresponding neighboring pixels in the feature
map input. Given its small receptive field, the original
network structure ignores some important information.
Therefore, it is necessary to enlarge the receptive field.
On the other hand, the reorganization process can be guided
by the input features and a larger receptive field thanks
to the CARAFE upsampling operation. Additionally, the
compact nature of the CARAFE operator structure satisfies
the need for lightweight models. In particular, the input
feature map is used to predict distinct upsampling kernels
for every position. These predicted kernels are then used to
perform feature recombination. CARAFE addsminimal extra
parameters and computational overhead while achieving
notable performance gains across a range of tasks.

As seen in FIGURE 6, CARAFE is made up of two
main modules: the feature recombination module and the
upsampling kernel prediction module. Using the upsampling
kernel prediction module, the process begins by predicting
the upsampling kernel, assuming an upsampling multiplier

of σ and an input feature map with dimensions H ×W × C .
After that, the upsampling process is carried out by the feature
recombination module, producing an output feature map with
dimensions of σH × σW × C .

The first step is to perform channel compression, which
reduces the number of channels to Cm using a 1×1 operation,
starting with an input feature map of size H × W × C .
This compression is meant to lighten the computational
burden in later stages. CARAFE then moves on to predict
the upsampling kernel and encode the content. It is crucial
to remember that although a larger kernel size results in a
wider perceptual field, it also has higher computational costs,
assuming a specific upsampling kernel size of kup × kup.
In order to apply distinct upsampling kernels to every position
in the output feature map, CARAFE must forecast the
upsampling kernel’s shape as σH×σW ×kup×kup. Initially,
a convolutional layer with kencoder ×kencoder channels is used
to predict the upsampling kernel after the input feature map
has been compressed. There are Cm channels in the input and
σ 2k2up channels in the output. Next, CARAFE produces an
upsampling kernel with the shape σH×σW×k2up is produced
by CARAFE expanding the channel dimension across the
spatial dimension.

CARAFE created a mapping from each position on the
output feature map to the matching area on the input feature
map. This area, which was centered at the position, measured
kup × kup. The output value was then produced by CARAFE
by computing the dot product between this region and
the anticipated upsampling kernel linked to that particular
position. It is important to note that the same upsampling
kernel was used by different channels at the same position.

4) DYHEAD: DETECTION HEAD BASED ON ATTENTION
MECHANISM
FIGURE 7 illustrates the attention-based detection head,
known as DyHead. DyHead introduces an innovative
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FIGURE 7. The illustration of dynamic head approach.

framework that incorporates attention mechanisms to unify
different object detection heads. This method effectively
increases the performance of the object detection head of
the model without adding more computational overhead
by integrating scale perception at the feature level, spatial
perception at the spatial position, and attention between
output channels for task perception.

Scale-aware attention (πL ), spatial attention (πS ), and
channel attention (πC ) are the three attention mechanisms
combined to form DyHead. The stacking of these attention
mechanisms results in the creation of a single block. This
stack of attention mechanisms is incorporated into each of
the multiple blocks that make up the final detection head.

Given the feature tensor F ∈ RL×H×W×C , the generalized
form of self-attentiveness is best described by DyHead as
follows:

W (F) = π (F) × F (1)

where π (·) is an attention function. Using fully connected
layers is one direct approach. However, directly learning
attention functions on all dimensions will lead to high
computational requirements and become impractical due to
its high dimensionality. To solve this problem, the attention
function is decomposed into three sequential attention
functions, each targeting a specific dimension:

W (F) = πC (πS (πL(F) × F) × F) × F (2)

Scale-aware attention πL : In order to solve the fusion
problem of different scale features based on semantic
meaning, scale aware attention was first introduced:

πL (F) × F = σ

f
 1
SC

∑
S,C

F

 × F (3)

In this case, f (·) corresponds to using 1 × 1 convolutional
approximation of linear functions, while σ (·) represents a
hard S-shaped activation function.

Spatial Perceived Attention πS : In order to highlight the
capacity to distinguish between different spatial positions,
a second module named Spatial Position Perceived Attention
was added to the exploration. S is decoupled into two stages
due to its large scale: first, sparse attention learning is
achieved through the use of deformable convolution, and this
is then completed by integrating features of different scales:

πS (F) × F =
1
L

L∑
i=1

K∑
i=1

wl,k × F
(
l; pk + 1pk ; c

)
× 1mk

(4)

In this equation, pk + 1pk is a shifted location by the self-
learned spatial offset 1pk to focus on a discriminative region,
K represents the count of sparsely selected positions. The
remaining parameter details are similar to those in deforma-
tion convolution, where wl,k denotes a bias importance factor

12858 VOLUME 12, 2024

287



Y. Zheng et al.: GBCD-YOLO: A High-Precision and Real-Time Lightweight Model

and 1mk stands for adaptive weighting importance factor,
which is excluded here for conciseness.

Task Perceived Attention πC : In order to promote col-
laborative learning and enhance the scalability of target
representation ability, a task aware attention mechanism was
designed. This attentionmechanism helps with different tasks
by dynamically adjusting feature channels as needed:

πC (F)

×F = max
(
α1 (F) × Fc + β1 (F) , α2 (F) × Fc + β2 (F)

)
(5)

As with DyReLU [35], hyperparameters are essential for
regulating activation thresholds. α and β were used for
rescaling and reorienting, respectively. Multiple instances
of the previously mentioned attention mechanism can be
stacked by applying it successively. FIGURE 8 shows the
configuration of the dynamic head and provides one-stage
detector and two-stage detectors.

FIGURE 8. The application of dynamic head blocks to one-stage and
two-stage object detector.

5) CIOU LOSS FUNCTION
In the original YOLOv5, prediction boundary boxes are
handled using the GIoU, which effectively handles situations
in which the predicted box does not intersect the actual box.
However, the intersection position is not accurately reflected
by GIoU when two boxes are contained within one another or
have different aspect ratios because it is unable to accurately
determine their relationship. Regression loss function known
as CIoU is used in our study to address these shortcomings.
The penalty function introduced by CIoU takes into account
the aspect ratio, the size of the overlapping area, and the
separation between the center points. Improved prediction
accuracy is achieved by stabilizing the target bounding box
regression through the incorporation of CIoU.

As shown in FIGURE 9, the distance between the center
points of the predicted box and the ground truth is represented
by ρ, and the diagonal distance of the mini-maximum
enclosing area that contains both the prediction box and the
ground truth is represented by the symbol c. The definition of

FIGURE 9. The CIoU loss function for bounding box regression.

the CIoU loss function is as follows:

IoU = IoU −
ρ2(b, bgt )

c2
− αv (6)

v =
4
π2

(
arctan

wgt

hgt
− arctan

w
h

)2

(7)

α =
v

(1 − IoU) + v
(8)

LossCIoU = 1 − IoU +
ρ2(b, bgt )

c2
+ αv (9)

where, respectively, b and bgt stand for the center points of
ground truth box Bgt and prediction Box B. A parameter
labeled as v is used to measure the similarity of aspect ratios,
and the weight parameter is represented by α.

6) THE GBCD-YOLO MODEL
FIGURE 10 illustrates the improved GBCD-YOLOmethod’s
structure. Firstly, the lightweight Ghost Bottleneck is intro-
duced to improve the computational efficiency and inference
speed of deep neural networks. Furthermore, the BiFormer
is incorporated in the neck to enhance the performance of
natural language processing tasks. Simultaneously, CARAFE
is utilized as an upsampling replacement to enhance percep-
tual and capture abilities for details. In addition, the Dynamic
Head is introduced to enhance the method’s flexibility and
generalization ability, and the loss function is replaced with
CIoU.

III. EXPERIMENTS AND DISCUSSION
As shown in FIGURE 11, the experimental procedure is
divided into three parts: dataset creation, network training,
and object detection. Initially, this paper used image pre-
processing methods to collect images and annotate them
according to experimental needs to create a comprehensive
dataset. Following that, we obtained the algorithm’s model
weights through parameter refinement and model training.
Finally, object detection was performed using carefully
trained weights and the detection results of various methods
were compared.
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FIGURE 10. The GBCD-YOLO model.

FIGURE 11. The flow chart of experimental process.
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A. DATASET AND PREPROCESSING
According to our cooperation plan with the local wood
processing factory, this paper has selected 756 wood surface
defect images from the workshop. To ensure the diversity
of the dataset, we also screened an additional 459 wood
surface defect datasets from academic papers [36]. Finally,
the two images were merged to create our new dataset, with
a total of 1215 images, some example images are shown in
FIGURE 12.

FIGURE 12. Sample images extracted from the wood defect dataset.

At the same time, to solve the problem of sample
imbalance, image pre-processing methods were used for
each data group. These methods include image enhancement,
mirroring, filtering, and grayscale conversion. After the
image pre-processing stage, we planned a custom dataset
consisting of 6075 images, including both original and
preprocessed images, as shown in FIGURE 13.

To better evaluate detection performance, the dataset
is annotated using LabelImg in four categories: cracks,
knots, dead knots, and resins. In addition, we converted the
TXT files to XML files labeled as VOC format. Finally,
we obtained a VOC format dataset of wood surface defect
images, as shown in TABLE 2 for various types of wood
defects. Then, these images were randomly assigned to
training, validation, and testing in a ratio of 7:2:1.

B. NETWORK TRAINING
Before the experiments, a sophisticated experimentation
and development platform is established utilizing Windows
10 (64-bit). The GPU boasts the commendable NVIDIA
GeForce RTX 4090 endowed with a substantial 24GB of
memory. The CUDA framework used in this endeavor
operates under the prestigious 11.3 version. The deep learning
framework is PyTorch.

Before network training, it is necessary to configure
hyperparameters to achieve optimal model performance and
avoid overfitting. The batch size is set to 32 and the
learning rate is set to 0.001. We set the number of iterations
to 300 and select Adam as the optimizer. As shown in
FIGURE 14, the value of the loss function sharply decreases

from 0 to 100 iterations and gradually decreases from 100 to
250 iterations. After 250 iterations, the loss value stabilizes,
indicating that the model has reached its optimal state.

C. EVALUATION METRICS
In this study, we utilized the average accuracy (AP) and the
average AP (mAP) to assess the accuracy of wood defect
detection. In addition, we used frames per second (FPS) and
number of parameters to evaluate the detection speed and
model size.

Precision =
TP

TP+ FP
(10)

Recall =
TP

TP+ FN
(11)

AP =

1∫
0

Precision (t) dt (12)

mAP =
1
N

N∑
i=1

APi (13)

FPS =
1

AverageProcessingTime
(14)

In equation (10) and (11), TP represents the number of
correctly detected defect samples; FP represents the number
of non-defect samples falsely detected as defects; and FN
represents the number of defect samples that were not
detected correctly. P and R, respectively, denote Precision
(the ratio of TP to the sum of TP and FP) and Recall
(the ratio of TP to the sum of TP and FN). In the
equation (12) and (13), AP represents the average detection
accuracy for each defect category. The average detection
accuracy for all defect categories is represented by the mAP.
It thoroughly takes into account the recall and precision of the
detection results. FPS is a metric that represents the number
of image frames processed per second and gauges the speed
at which algorithms process data and how long it takes to
draw conclusions from models. Real-time detection is made
possible by algorithms that can perform computations in
a comparatively shorter amount of time, as indicated by a
higher FPS, which typically indicates lower computational
complexity.

In addition, mAP (0.5) and mAP (0.5:0.95) are often
used as evaluation metrics in experiments. mAP (0.5) is the
mAP with the IoU set to 0.5 and mAP (0.5:0.95) represents
the mAP computed across a range of IoU thresholds
from 0.5 to 0.95.

D. ABLATION EXPERIMENTS
Using the same environmental and parameter settings,
we performed five sets of ablation experiments to precisely
assess the influence of each component of enhancement on
wood defect detection. The purpose of these joint ablation
experiments was to assess how well the changes worked.
TABLE 3 presents the experiment results. For the purpose of
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FIGURE 13. Image pre-processing.

FIGURE 14. The loss of training and validation.

comparing these results with the previous five experimental
sets, we used the YOLOv5s model as the baseline.

Compared to the original YOLOv5s, when only Ghost
Bottleneck was introduced, the Precision increased by
1.274%, Recall increased by 2.868%,mAP (0.5) increased by
1.372%, Parameters decreased by 8.451% and FPS increased
by 3.558%. These results verify that our Ghost Bottleneck has
better feature extraction performance with fewer parameters.

After introducing the BiFormer model on this basis,
the Precision increased by 2.397%, Recall increased by

TABLE 2. Sample diagram of wood surface defects.

10.457%, mAP (0.5) increased by 5.164%, Parameters
slightly decreased, and FPS increased by 0.829%. These
findings confirm that the overall detection accuracy has sig-
nificantly increased following the addition of the BiFormer
model.
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TABLE 3. Ablation experiments.

Then, replacing the original upsampling operator with the
lightweight CARAFE upsampling operator, the Precision
is increased by 1.063%, Recall is increased by 0.907%,
mAP (0.5) is increased by 1.134%, Parameters decreased
by 3.125% and FPS is slightly increased. According
to the experimental findings, CARAFE reduces the size
of the model while increasing the computational accuracy.
The upsampling operation model has the benefit of being
lightweight and has good recognition performance.

After adding the DyHead, Precision increased by 6.064%,
Recall increased by 5.397%, and mAP (0.5) increased by
5.619%. The parameters slightly increased, but compared to
this, Precision, Recall, and mAP (0.5) all showed significant
improvements that met the target period. According to the
experimental findings, the incorporation of DyHead enables
the recognition of image details.

Finally, after adding the CIoU loss function, also known
as our method model, the Precision increased by 3.797%,
Recall increased by 2.973%,mAP (0.5) increased by 2.530%,
Parameters decreased by 4.762% FPS increased by 0.117%.
The experimental results indicate that CIoU can effectively
measure the degree of matching between bounding boxes.
Improve the efficiency of model detection.

In conclusion, our approach has improved significantly
while maintaining a high degree of accuracy in terms
of minimizing parameters. These results validate our pro-
posed model’s high precision and lightweight. The ablation
experiment’s visual comparison results are displayed in
FIGURE 15. It is evident that our approach has the highest
accuracy and is most similar to the actual box.

Meanwhile, we compared our method to the original
YOLOv5s to assess its detection performance and demon-
strate its visual appeal. We randomly selected a subset from
the dataset for evaluation, and the results are shown in
FIGURE 16. In the first identical scenario, comparing the
result graph (a) detected by the original YOLOv5s with
our method’s result graph (e), it is evident that the original
YOLOv5s failed to detect the Live in the lower left corner
of the Live_ Knot, there is an error detection situation, and

our method accurately detected the Live in the bottom left
corner of the Live_ Knot. In the other three cases, although
the initial YOLOv5s was able to detect defects on the wood
surface, its confidence was lower than that of our method.
As shown in FIGURE 16, (b) and (f), (c) and (g), (d) and (h),
it can be concluded that our method outperforms the original
YOLOv5s in detecting wood surface defects.

E. COMPARATIVE EXPERIMENTS
To further validate the detection performance of the method
proposed in this article, a comparative analysis was per-
formed. Our method was compared with several one-stage
object detection algorithms, including SSD and YOLOv5s,
alongside well-regarded approaches such as RetinaNet and
YOLOv8.

In the training process, we present a comparison of our
method’s mAP (0.5) over roughly 300 epochs with other
methods. The results presented in FIGURE 17 demonstrate
that, for each method, the mAP (0.5) increases rapidly during
the first 50 epochs before beginning to trend toward stability
at epoch 250. However, the mAP (0.5) of our method rises
faster and finally stabilizes at maximum value of 0.88719,
which is higher than other methods.

In the detection process, we also conducted comparative
experiments using our method and the algorithms mentioned
above. The weight file with the best training performance is
saved in the same experimental environment. The evaluation
metrics used for comparative experiments encompass AP,
mAP (0.5), mAP (0.5:0.95), FPS, Parameters, Precision and
Recall.

As shown in TABLE 3, TABLE 4 and FIGURE 18, both
the speed of model inference and the accuracy of detection
have been improved in our method.

Compared to SSD, the Precision and Recall have improved
by 16.933% and 17.701%, the mAP (0.5) and mAP (0.5:0.95)
have improved by 17.576% and 18.536%. The parameters
have decreased by 82.608%, FPS has increased by 56.6%
and the AP of four types of defects Crack, Dead_Knot,
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FIGURE 15. Visualization of wood surface defects through ablation experiments. The red rectangular box indicates missed recognition of the
targets, the yellow rectangular box indicates misidentification of the targets, and the blue rectangular box indicates correct recognition of the
targets.

TABLE 4. The Comparison results of different methods in the detection process.

Live_Knot and Resin has been increased respectively by
5.501%,11.032%,21.733% and 32.038%.

Compared with the original YOLOv5s, the Precision and
Recall have improved by 10.372% and 13.568%, the mAP
(0.5) and mAP (0.5:0.95) have improved by 13.454% and
11.945%. The parameters have decreased by 15.493%, FPS
has increased by 6.258% and the AP of four types of defects

Crack, Dead_ Knot, Live_ Knot and Resin has been increased
respectively 4.7%,11.07%,11.27% and 26.127%.

Compared to RetinaNet, the Precision and Recall have
improved by 8.089 % and 7.701%, the mAP (0.5) and
mAP (0.5:0.95) have improved by 7.693% and 9.705%. The
parameters have decreased by 83.562%, FPS has increased
by 83.475% and the AP of four types of defects Crack, Dead_
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TABLE 5. AP for four types of wood defects in the detection process.

FIGURE 16. Comparison of detection results between the original
YOLOv5s and our method.

FIGURE 17. The mAP (0.5) of related algorithms in the training process.

Knot, Live_ Knot and Resin has been increased respectively
6.188%,6.359%,9.733% and 8.492%.

Compared with YOLOv8, the Precision and Recall have
improved by 2.512 % and 3.508%, the mAP (0.5) and
mAP (0.5:0.95) have improved by 3.198% and 4.046%. The

parameters have decreased by 45.946%, FPS has increased
by 34.681% and the AP of four types of defects Crack, Dead_
Knot, Live_ Knot and Resin has been increased respectively
1.488%,2.896%,3.857% and 4.551%.

Taking into account the complexity of each model and the
actual detection results, it can be generally concluded that our
proposed method outperforms other methods in the detection
of wood defects.

Meanwhile, to facilitate a more intuitive comparison of
the detection effectiveness of various methods, we conducted
multiple sets of comparative experiments targeting different
scenarios.

Based on scene 1 depicted in FIGURE 19, it can be inferred
that during the inspection of surface defects in the wood,
the presence of numerous defects and the complexity of the
image pose significant challenges to the algorithm. Both SSD
and YOLOv5s failed to detect the live knot at the bottom of
the timber, indicating amissed detection. AlthoughRetinaNet
and YOLOv8 did not miss any detections, their confidence
scores were lower compared to our algorithm. Additionally,
when detecting other defects, this algorithm consistently
demonstrated higher accuracy than other algorithms. There-
fore, in complex scenes, our algorithm exhibits a high level
of precision.

Based on the observations from scenes 2 and 3 in
FIGURE 19, it can be noted that the classical SSD algorithm
fails to accurately detect resin, dead knot, and live knot as
small surface defects with thewood. It exhibits a phenomenon
of missing detections. In contrast, YOLOv5s, RetinaNet and
YOLOv8 algorithms are capable of detecting all defects on
the wood surface. However, the confidence levels of these
detections are lower compared to the current algorithm.
In other words, our method’s algorithm possesses a higher
level of accuracy and precision in wood defect detection.

As shown in Scene 4 and 5 in FIGURE 19, when detecting
wood surface defects, due to the small number of defects and
low image complexity in Scene 4 and 5, their interference
with the algorithm is relatively weak. In this case, the
classic algorithms SSD, YOLOv5s, RetinaNet and YOLOv8
successfully detected defects on the wood surface without
any missed detections. However, the confidence level of the
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FIGURE 18. The AP of different models for four types of wood defects.

FIGURE 19. Detection comparison in multiple scenarios.

defects detected by these algorithms is lower than that of this
algorithm. Therefore, our method’s algorithm still exhibits
high accuracy in low complexity scenarios.

In summary, our method can achieve optimal detection
performance on both high and low complexity wood surfaces
in different scenarios. The algorithm used in our approach
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greatly minimizes errors and reduces missed detections,
producing detection results that are more reliable and
accurate.

IV. CONCLUSION
To achieve amore precise and rapid detection of wood surface
defects and address the limitations of existing methods, this
paper introduces an enhanced lightweight model, GBCD-
YOLO, based on YOLOv5s. Firstly, we introduced a
lightweight Ghost bottleneck to improve the computational
efficiency and inference speed of deep neural networks.
In addition, BiFormer was incorporated into the neck to
improve the performance of natural language processing
tasks. Meanwhile, CARAFE was used as an upsampling
substitute to enhance the perception and capture of details.
In addition, in order to enhance the flexibility and generaliza-
tion ability of the method, dynamic headers were introduced,
and finally CIoU was used instead of GIoU. The results of
the optimizedwood defect dataset experiment demonstrated a
notable advancement in our approach. Specifically, compared
to YOLOv5s, mAP (0.5) increased by 13.454% to 88.719%,
FPS increased by 6.258% and the parameters decreased by
15.493%. In addition, our method has advantages over other
models mentioned in the paper in terms of mAP and model
inference speed. In summary, our method effectively solves
the problems of low detection rate of small size defects on
wood surfaces and incomplete recognition of complex and
dense defects.

However, this paper acknowledges limitations in visual-
izing the internal conditions of wood with respect to size
and lighting. Therefore, our future research endeavors will
focus on integrating deep learning methods with techniques
capable of characterizing the internal conditions of wood
more effectively.
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