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ABSTRACT Accurate and real-time detection of small targets of pedestrians and cars in video images
is indeed crucial for various applications such as autonomous driving and urban management. Existing
detection algorithms face challenges related to small targets and low visibility, resulting in issues such as
low accuracy, missed detection and reduced detection efficiency. This paper proposes an improved YOLOvVS5s
FMG (Fine-tuning Slice, Multi-spectral Channel Attention, Ghost Bottleneck) detection method based on
YOLOVS, which firstly introduces fine-tuning slicing aided hyper inference (SAHI) to generate small target
objects by slicing the pictures into the network. Secondly, the multi-spectral channel attention (MCA) module
is integrated into the feature extraction network, which enhances the information dissemination among
features and strengthens the network’s ability to distinguish between foreground and background. Then,
the network uses the convolution network to extract features instead of the full connection layer and uses
the lightweight Ghost Bottleneck instead of the bottleneck structure. Finally, the prediction part adopts the
complete intersection over union (CloU) loss function to achieve accurate bounding box regression. Based
on the experimental results conducted on the self-made dataset, compared to YOLOVSs, the mAP (0.5) of
YOLOvVS5s FMG on the dataset is improved by 9.3%, and the mAP (0.5:0.95) is improved by 2%. At the same
time, the frames per second (FPS) is increased by 41.8%, and the number of parameters has been reduced by
18.5%. The proposed method demonstrates successful detection of small targets of pedestrians and vehicles,
ensuring its effective applicability under conditions of low visibility.

INDEX TERMS Small target detection, YOLOV5, SAHI, MCA, ghost bottleneck, low visibility.

1. INTRODUCTION detection. However, current detection technologies have poor

With the development of cities and technology, manag-
ing vehicles and pedestrians through surveillance video
has become an important issue for urban management [1].
Meanwhile, as autonomous driving technology advances,
the accurate detection of pedestrians and vehicles becomes
increasingly crucial in the development of autopilot systems.
Especially for surveillance video, longer shooting distances
often lead to smaller pedestrian and car targets in the cap-
tured video frames, which brings great challenges to target
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performance in detecting small targets, especially in low
visibility such as fog or low light conditions.

To refine the detection performance in low visibility, tradi-
tional algorithms usually use image processing to classify and
locate the corresponding targets, and use the method of man-
ually designing features in the feature extraction stage. The
basic process is using the sliding window method to select
candidate regions in the image firstly [2], then customizing
the design features based on different areas, and finally com-
pleting the detection according to the customized underlying
features [3]. The manual selection of features in this method is
not conducive to acquiring image features. Meanwhile, image

VOLUME 11, 2023

270


https://orcid.org/0000-0003-4418-3518
https://orcid.org/0000-0002-8721-5084
https://orcid.org/0000-0002-5253-3779

Y. Zheng et al.: YOLOv5s FMG: An Improved Small Target Detection Algorithm Based on YOLOv5 I EEE ACCGSS

enhancement is applied before target detection [4], which
is complexity and time-consuming. However, most of the
traditional methods are only suitable for some specific scenes.
In practical scenarios with the targets complex and change-
able, the traditional methods can no longer meet the actual
needs of the application.

In recent years, target detection algorithms based on neural
networks have experienced growing adoption and can be
broadly categorized into two groups: two-stage detectors and
single-stage detectors. The two-stage algorithm can gener-
ate target candidate frames by various algorithms, and then
classify the targets by convolutional neural network. Classic
two-stage detection algorithms include R-CNN [5], Faster
R-CNN [6], Mask R-CNN [7] and so on. The single-stage
detection algorithm does not generate candidate frames, but
directly transforms the positioning problem of the object
boundary frame into a regression problem for processing.
The single-stage detection algorithms mainly include SSD
[8], YOLOV2, YOLOV3, YOLOv4, YOLOVS [9], etc. Among
these two kinds of deep learning techniques, the YOLO
models are considered a practical target detection algorithm,
which can directly create various types of detection frames
and confidence levels through appropriate neural networks.
The YOLO models have been employed in a wide range
of scene detection tasks, and their execution accuracy and
speed are very high, leading to the emergence of several
small target detection methods based on YOLOVS in low
visibility. In 2022, Image-Adaptive YOLO [10] was proposed
for object detection in adverse weather conditions. In 2022,
Tan et al. [11] proposed an infrared sensation-based salient
target enhancement method. In 2022, mmWave-YOLO [12]
was proposed, which enabled accurate object classifica-
tion and location recognition by applying different detectors
to each distance data. In 2023, WilDect-YOLO [13] was
proposed, which was an efficient and robust computer
vision-based accurate object localization model under vari-
ous challenging environments. In 2023, EnsembleNet [14]
was suggested, leveraging the strengths of both the Faster
R-CNN and YOLO models, which was a hybrid approach for
vehicle detection. In 2023, Li et al. [15] proposed a visible
light small object detection based on YOLOVS, which refined
the performance of small target detection. However, existing
detection models have faced challenges in achieving high per-
formance while maintaining a balance between accuracy and
efficiency.

As shown in FIGURE 1, the current small target detection
methods have poor performance in low visibility such as fog
and low light conditions due to the following challenges:

(1) Reduced contrast: Low visibility conditions like fog,
rain, or snow decrease the contrast between the target and its
background. This impedes the ability of detection algorithms
to differentiate the target from its surroundings, resulting in
decreased accuracy.

(2) Distorted boundaries: Adverse weather conditions
cause distortions in the shape and boundaries of objects,
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(b). City in the night.

FIGURE 1. Typical low visibility scenarios.

rendering them blurry or indistinct. This confusion can lead
to false positives or false negatives in target detection algo-
rithms.

(3) Limited range and resolution: The range and resolution
of cameras are significantly curtailed in low visibility scenar-
ios. This limitation affects the ability to detect and precisely
locate targets, particularly at longer distances.

In order to solve the mentioned problems and optimize
the detection of small targets, this paper proposes YOLOVSs
FMG. The main contribution of our work can be summarized
as follows:

(1) The proposed method adds the principle of fine-tuning
slicing aided hyper inference (SAHI) [16], which realizes the
slice operation through the input side.

(2) Multi-spectral channel attention (MCA) [17]module
is added into the YOLOvSs network using the multi-scale
detection method.

(3) The improved network uses convolutional network to
extract features instead of using the fully connected layer,
which further improves the network performance and reduces
the network weight by using the Ghost module [18].

(4) The complete intersection over union (CloU) [19]
loss function is applied to enhance the original YOLOV5’s
detection ability for small targets and low visibility
scenarios.

The remainder of this paper is structured as follows:
Section II reviews the principle of YOLOVS and describes
the improvement details of YOLOvSs FMG. In Section III,
the dataset and the results of neural network training are
described.

The results and discussions of comparative experiments
and ablation experiments are presented. Finally, Section IV
illustrates the main conclusions.
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II. PRINCIPLE AND METHOD IMPROVEMENT

A. PRINCIPLE OF YOLOv5 TARGET

DETECTION ALGORITHM

YOLOVS is the fifth generation of YOLO, which has four
structures: YOLOVSs for small size, YOLOv5m for medium
size, YOLOVSI for large size and YOLOvSx for extra-large
size. The difference between them is the number of archi-
tectural parameters. YOLOVS5 network structure is divided
into four parts: input, Backbone, Neck and Prediction [20],
which uses Mosaic data enhancement method in the data
input part. This algorithm is improved based on CutMix data
enhancement method, with new functions of adaptive anchor
box computing and adaptive image scaling. The inputs are
spliced by random scaling, random cropping and random
arrangement to enhance the dataset. During each training,
the best anchor frame values in different training sets are
adaptively calculated, the images with different aspect ratios
are adaptively scaled, and the minimum black edges are
adaptively added to the original images. Focus and cross stage
partial (CSP) structure are mainly used in Backbone. Focus
structure is introduced into YOLOVS for the first time to
directly process the input pictures.

YOLOVS adds feature pyramid network (FPN) and path
aggregation network (PAN) structure to the Neck [21], which
is improved based on YOLOv4. CSP2 structure is designed
with reference to CSP net to strengthen the ability of network
feature fusion. Prediction improves the loss function of the
boundary anchor frame from intersection over union (IoU)
loss to generalized IoU loss. In the post-processing process
of target detection, YOLOVS uses weighted non-maximum
suppression (NMS) operation to screen multiple target anchor
frames [22].

B. IMPROVEMENT

1) SLICE-ASSISTED FINE-TUNING AND REASONING
Compared with YOLOv4, YOLOVS’ s backbone network
has a new Focus structure. The important function of the
Focus structure is to realize the slicing operation. As shown
in FIGURE 2, in the YOLOVS5s network model, an ordinary
image with a size of 3 x 608 x 608 is input into the network,
and the feature image with a size of 12 x 304 x 304 is con-
verted by one focus-slicing operation, and then it is subjected
to an ordinary convolution operation of 32 kernels [23].

FIGURE 2. Focus structure screen cutting operation.
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To fully express the features of small targets and enhance
the detection accuracy, this paper divides the input image into
overlapping slices in the process of fine-tuning. Compared
with the images directly input into the network, this method
can make the small targets in the images produce a relatively
large pixel area, keep the features of small targets as much as
possible, avoid the feature loss caused by too few pixels of
small targets in the original images, and keep the detection
accuracy of large targets in the images.

Fine-tuning is one of the most popular transfer learning
strategies in the application of neural networks. In the practice
of deep learning, the network is rarely trained from scratch
because the data set is not large enough. The common practice
is to use the pre-trained network to fine-tune the network
parameters. Fine-tuning uses the known network structure
and training parameters to adjust the parameters of several
layers in front of the output layer to achieve the purpose of
initializing the network. This process effectively utilizes the
powerful generalization ability of deep neural network and
eliminates the need of designing complex models and time-
consuming training [16].

Therefore, when training our own network, we only need
to build a smaller data set, spend a shorter training period, and
fine-tune the network weight based on pre-training, instead of
reusing a large data set for training.

i
Pretraining dataset ! Fine-tuning dataset Augmented fine-tuning dataset
i

-

LTI

TR E, - I’

(). Slicing aided fine-tuning(SF).

Full Tnference (FL)

(b). Slicing aided hyper inference (SAHI).

FIGURE 3. The SF and SAHI structures.

At the same time, we use slicing to assist this process.
As shown in FIGURE 3(a), the small target area is extracted
from the picture to form a patch and combined into the
original data set, so that the small target is enlarged, thus
assisting the fine-tuning of network initialization parameters.
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FIGURE 4. The brief network structure of MCA.

However, with the decrease of patch size, slice-assisted fine-
tuning cannot cover the image area of large objects, which
may lead to poor detection performance of large objects.
Therefore, the slice-aided reasoning method is used to solve
the problems in the fine-tuning process.

As shown in FIGURE 3(b), the original input image I is
divided into L overlapping slices of p x ¢, and the patch size
is adjusted based on keeping the aspect ratio unchanged [24].
The forward transmission of target detection is applied to
each overlapping slice to reason for small targets, and the
optional full inference of the original image is used to detect
large targets. Finally, NMS is used to combine the two kinds
of prediction results into the original image. In the NMS
process, by traversing all the detection frames, the detection
frame whose IoU is greater than a certain threshold T or the
detection probability is lower than the threshold T with the
highest current confidence is eliminated, and finally the target
prediction frame is obtained.

2) MCA-FUSION

Traditional channel attention modules are dedicated to
constructing various channel importance weight functions.
SeNET [25] proposes a channel attention mechanism, which
performs global average pooling (GAP) on channels, and
then uses the full connection layer to adaptively calculate the
weight of each channel. ECANet [26] uses one-dimensional
convolution layer locally to reduce the redundancy of all
connection layers and has achieved remarkable performance
improvement. However, there is a lack of feature diversity
when dealing with different inputs.

To solve this problem, MCA is used in this paper. The
brief network structure of MCA is shown in FIGURE 4. The
first step is to calculate the results of each frequency compo-
nent in the channel attention separately. Following this, the
frequency components are combined. Finally, the obtained
results are utilized to identify the Top-k frequency compo-
nents with the best performance, which are then selected and
retained. In addition, GAP is the lowest frequency of discrete
cosine transform (DCT), and only using GAP is equivalent
to discarding other frequency components containing a large
amount of information in the feature channel [27]. In this
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FIGURE 5. The YOLOv5s model incorporating MCA module.

work, GAP is used as a pre-processing method to discard
other frequency component information except the lowest
frequency component. This method is extended in the fre-
quency domain, and more frequency component information
is naturally embedded in MCA framework. Because different
frequency components contain different information, more
information can be extracted from redundant channels.

As shown in FIGURE 5, the MCA module is integrated into
the Neck to enhance the processing and extraction of data.
By selectively attending to relevant vectors and disregarding
irrelevant ones, the neural network aims to eliminate the inter-
ference caused by excessive information and prioritize the
calculation of feature vectors. This approach enables effective
data information extraction and enhances both the accuracy of
calculations and computational efficiency. A channel prun-
ing strategy is proposed to compress it, and the optimal
large model is realized as an ultrasmall model for real-time
detection.
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FIGURE 6. The schematic diagram of the multi-scale detection process.

Input

Output
(a). The convolutional layer.

Input Output

(b). The Ghost module.

FIGURE 7. The convolutional layer and the Ghost module.

3) IMPROVED MULTI-SCALE DETECTION

The improved network uses the convolution network to
extract features instead of the full connection layer for small
target detection. Therefore, in the process of model training,
there is no need to fix the size of the input image [28].
Because the improved network model contains five residual
structures, the size of the input image should be a multiple
of 32 and the minimum size of the image should be 1/32 of
the input image during training. Divide the self-made data
set pictures into various sizes, such as 320, 352, 384, ... 608,
etc. During the iterative training of the model, the input size
of an image is randomly changed every 10 times, so that the
model can adapt to the changes of images of different sizes.
The schematic diagram of the multi-scale training process is
shown in FIGURE 6. The network model trained by the multi-
scale strategy can accept images of any size as input, which
is helpful to enhance the generalization ability of the model.

4) LIGHTWEIGHT GHOST BOTTLENECK

Compared with the traditional convolution, Ghost Net [29]
is divided into two steps. As shown in FIGURE 7, firstly,
Ghost Net uses normal convolution calculation to get feature
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FIGURE 8. The CloU loss function for bounding box regression.

maps with fewer channels, then uses cheap operation to get
more feature maps, and then concatenates different feature
maps together to form a new output. Compared with the
widely used unit of 1 x 1 point-wise evolution, the main
convolution in Ghost module can customize the kernel size,
adopt point wise evolution to process features across chan-
nels, and then adopt depth convolution to process spatial
information. The Ghost module adopts the splicing method,
which further reduces the amount of calculation. Our work
uses the lightweight Ghost Bottleneck instead of the bottle-
neck structure.

5) LOSS FUNCTION

The original YOLOVS uses generalized intersection over
union (GIoU) [30] to process the prediction boundary box,
which can effectively address situations where the predicted
bounding box and the actual bounding box do not intersect.
However, when the two boxes are contained within each other
or have different length-to-width ratios, the GIloU fails to
accurately determine the relationship between the two boxes,
which cannot reflect the intersection position [31].

In order to overcome the shortcomings of GloU, CloU [32]
is adopted as the regression loss function in our study. CloU
introduces a penalty function to account for the scale of the
overlapping area, distance between center points, and aspect
ratio. CIoU stabilizes the regression of the target bounding
boxes and enhances the accuracy of the prediction. As shown
in FIGURE 8, ¢ represents the diagonal distance of the min-
imum closure area that contains both the prediction box and
the ground truth, and prepresents the distance between the two
center points of predict box and ground truth. The CIoU loss
function can be defined as:

2 '

b, b
IoU=IoU—%2)—av M
4 ws! w\?2

V= = (arctan o arctan Z) 2)
v
[ S— 3
1 —1IoU)+v @
2 1
b, b
LOSSC[OU =1—-1oU + % +av (4)

where b and b8 represent the center points of prediction
Box B and ground-truth box B!, respectively. The weight
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FIGURE 9. The network structure of YOLOv5s-FMG.

parameter is denoted as «, and the similarity of aspect ratios
is measured using a parameter labeled as v.

6) YOLOV5S FMG

The overall structure of the algorithm proposed in this article
is shown in FIGURE 9. Firstly, we employ SAHI to fine-
tune the input image, and the resulting enhanced image is
then used as input for further processing. After the image is
inputted into the model, the first layer applies a convolution
operation with a 6 x 6 kernel size, which is equivalent to
the original Focus module. Furthermore, all other convolution
operations are replaced with GhostConv. The C3 structures
are substituted with C3Ghost. For feature fusion using the
Neck network, the C3MCA module is employed to enhance
the significance of crucial features. At the output stage, GIoU
is replaced with CIoU. Weighted NMS is used to eliminate
redundant prediction boxes before the final image output.

IIl. EXPERIMENTS AND DISCUSSION

The experimental process can be divided into three main
parts: dataset construction, model training, and small target
detection, as illustrated in FIGURE 10. Firstly, we con-
structed a self-made dataset by collecting images and per-
forming image pre-processing techniques. Then, by adjusting
parameters and model training, we got the model weights
of YOLOv5s FMG. Finally, the small target detection was
performed by using the trained weights, and the detection
results of different methods were compared and analyzed.
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A. DATASET AND PRE-PROCESSING

The images in the dataset of this experiment were mainly
taken from daily life and partially collected from the Internet,
for a total of 1258 images. The assignment of images to
training, validation, and testing images is done randomly, in a
ratio of 7:2:1. As shown in FIGURE 11, in order to avoid
sample imbalance and make the dataset more in line with
practical application scenarios, four image pre-processing
methods, including enhancing, mirroring, blurring and Gaus-
sian noising are applied to each group. After the image
pre-processing stage, a self-made dataset is constructed with a
total of 6290 images, which includes both the original images
and the pre-processed images.

The labeling software used for annotating the dataset in
YOLO format is Labellmg. To better evaluate the detection
performance of small targets in low visibility, the dataset
has been labeled with two categories: people and car. The
annotations for the dataset are saved as XML files following
the PASCAL VOC format.

B. NETWORK TRAINING

In the network training, Windows 10 (64-bit) is used to build
the experimental development platform. The CPU is config-
ured as an 11th Gen Intel (R) Core (TM) i7-13900K CPU @
5.40 GHz. The GPU is an NVIDIA GeForce RTX 3080
(10 GB). The CUDA version is 11.3. The Python version
is 3.8. The deep learning framework used in the experiment
is PyTorch.
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Dataset Construction Model Training Small Target Detection

Data Dataset Input
Collection Loading Images

Data Parameters Model
Augmentation Setting Loading

Data Network
Annotation Initialization

Model
Training

Prediction

Output

FIGURE 10. The flowchart of dataset construction, model training and small target detection.

Before the network training, the hyper-parameters are set
to achieve the best performance of the model and prevent the
model from overfitting. The batch size is 32, and the learning
rate is set at 0.001. We set the number of iterations to 300, and
we employ Adam as the optimizer. As shown in TABLE 1,
the loss function value drops sharply at O to 200 iterations
and drops slowly at 200 to 300 iterations. After 300 epochs,
the loss value tends to be stable, and the model reaches the
best state.

C. EVALUATION INDICATORS

The evaluation indicators in this paper include precision,
recall, average precision (AP), mean average precision
(mAP) and frames per second (FPS). Precision refers to the
probability that all samples detected as positive by the model
are indeed positive samples. Recall represents the probability
that the model correctly identifies positive samples from the
total number of actual positive samples. The precision and
recall are respectively expressed by Equations (5) and (6):

. Tp
Precison = ———— 5)
Tp+Fp
T,
Recall = — (6)
Tp + Fy
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where Tp (True Positives) represents the number of posi-
tive samples correctly predicted by the model. Similarly, Fp
(False Positives) represents the number of positive samples
incorrectly predicted by the model, and Fy (False Negatives)
represents the number of negative samples incorrectly pre-
dicted by the model.

AP is a key performance indicator that tries to remove
the dependency of selecting one confidence threshold value
and is defined by the average precision in the area under
the precision-recall curve, which is denoted as Equation (7).
Meanwhile, mAP is usually applied to evaluate the results
combining precision and recall, which is calculated by taking
the average of AP across all the classes under consideration
and denoted as Equation (8):

1
AP = / Precision(t)dt (@)
0
X
mAP = Zl:AP,- ®)
i=

In addition, mAP (0.5) and mAP (0.5:0.95) are often
employed as evaluation metrics in experiments. mAP (0.5)
is the mAP with the IoU set to 0.5 and mAP (0.5:0.95)
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Original images

Training images:
1258x0.7~880
Validation images:
1258x0.2~252
Testing images:
1258x0.1~126
Total:1258

FIGURE 11. Image pre-processing and annotation.
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FIGURE 12. Training and validation losses.

represents the mAP computed across a range of IoU thresh-
olds from 0.5 to 0.95.

D. COMPARATIVE EXPERIMENTS
In order to further verify the detection performance of
the proposed YOLOv5s FMG in this article, we compared
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FIGURE 13. The mAP (0.5) of related algorithms in training.

our method with several one-stage object detection algo-
rithms such as SSD and YOLOvS5s, and the methods
discussed before, which are mmWave-YOLO [11] and
EnsembleNet [14].
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TABLE 1. The mAP (0.5) comparison of different methods through different epochs.
Model Epoch=0 Epoch=50 Epoch=100 Epoch=150 Epoch=200 Epoch=250 Epoch=300
SSD 0 0.63864 0.69542 0.73302 0.75018 0.76383 0.77613
YOLOVS5s 0 0.63946 0.71491 0.76766 0.76818 0.78835 0.80213
mmWave-YOLO 0 0.71415 0.77760 0.81577 0.83891 0.84962 0.86236
EnsembleNet 0 0.68820 0.76136 0.78866 0.81205 0.83464 0.84590
Our Method 0 0.75983 0.81295 0.84084 0.86025 0.87664 0.88502
TABLE 2. Comparison results of different methods.
Model Car-AP Person-AP mAP (0.5) FPS Parameters (10°) Model Size (MB)
SSD 78.7 76.2 77.6 26.1 24.01 92.8
YOLOvVSs 80.8 83.7 79.2 24.9 7.07 12.9
mmWave-YOLO 87.9 85.4 86.2 304 11.6 9.6
EnsembleNet 87.1 81.2 84.5 27.6 7.32 11.3
Our Method 90.2 84.7 88.5 35.3 5.76 7.5

TABLE 3. Ablation experiments.

Precision  Recall mAP (0.5) mAP (0.5:0.95)
76.2 75.3 79.2 56.4
76.8 76.2 81.8 57.1
78.6 87.1 834 575
825 85.3 86.3 579
76.2 80.4 82.1 573
80.3 82.6 86.2 58.1
79.8 87.2 85.4 579
84.5 84.7 88.5 58.4

Model +SAHI +MCA +Ghost +CIoU
Original YOLOVSs
- V
- w/
- N
- N
- N N
- N N N
Our Method \/ \/ R N
95
90.2
90 670 . M s8s
[ssa™? ]
85 8.7 845 847
8038 812
792
80 L
762
75
70
65
SsD YOLOVSs mmWave-YOLO  EnsembleNet Our Method

OCar-AP  @Person-AP BmAP (0.5)

FIGURE 14. The Car-AP, Person-AP and mAP (0.5) of different methods.

As shown in FIGURE 13, in the training process, the
mAP (0.5) curve of our method is compared with that of other
methods for approximately 300 epochs. TABLE 1 shows that
the mAP (0.5) for each method experiences a rapid increase
in the initial 50 epochs and tends to be stable after the epoch
reaches 200.

During the training process, the curve of our method con-
sistently surpasses the curves of other methods, indicating
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that the YOLOv5s FMG network achieves higher detection
accuracy. Furthermore, the curve of the improved model
exhibits a smoother progression, suggesting improved stabil-
ity. Finally, the optimal mAP (0.5) of our method is 0.885,
which is higher than 0.802 of the original YOLOvVSs model
and increased by approximately 8.3%, verifying the improve-
ment of the YOLOv5s FMG.

To evaluate the detection performance of the YOLOVSs
FMG proposed in this paper, a comparative experiment
was conducted on a self-made dataset consisting of var-
ious scenes in low visibility. YOLOvSs FMG was com-
pared with SSD, original YOLOvSs, mmWave-YOLO and
EnsembleNet. Under the same experimental environment, the
weight file with the best training effect is saved as the weight
file. The evaluation indicators used for comparative exper-
iments include AP, mAP (0.5), FPS, number of parameters
and mode size.

As shown in TABLE 2 and FIGURE 14, our algorithm has
been optimized in terms of detection speed, accuracy, model
size, and generalization performance.

Compared to SSD, the AP of car and person increase sig-
nificantly, the mAP (0.5) has improved by 10.9% and the FPS
is increased by 35.2%. Meanwhile, the number of parameters
has been reduced by 76%, the model size decreases by 91.9%.

Compared to the original YOLOVSs, the Car-AP and
Person-AP increase by 9.4% and 1%, the mAP (0.5) has
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FIGURE 15. Comparison of detection results in low light environment.

(a). The detection result based on YOLOV5s.

FIGURE 16. Comparison of detection results in foggy environment.

improved by 9.3% and the FPS is increased by 41.8%.
Meanwhile, the number of parameters has been reduced by
18.5%, resulting in a substantial decrease in the model size
by 41.9%.

Compared to mmWave-YOLO, the Car-AP increases by
2.3%, but the Person-AP decreases by 0.7%. Meanwhile, the
mAP (0.5) has improved by 2.3% and the FPS is increased by
16.1%. However, except for a slight decrease in Person-AP,
all other evaluation indicators show improvement.

Compared to EnsembleNet, the Car-AP, Person-AP and
mAP (0.5) are improved by 3.1%, 3.5% and 4%. The FPS
is improved by 27.9% with the number of parameters and the
model size decreased by 21.3% and 33.6%.

Considering the complexity of each model and the
actual detection results, it can be generally concluded that
YOLOvS5s FMG performs better compared to the other
models.
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E. ABLATION EXPERIMENTS AND RESULT DISCUSSIONS
To evaluate the optimization effects of each proposed module
in the network, this section employs ablation experiments for
verification purposes.

The function of each module is shown in TABLE 3, com-
pared to YOLOVSs, using only SAHI on the input side can
increase the mAP (0.5) by 2.6%, and there is a small increase
in precision and recall. Adding the MCA module individually
to the Neck network can increase the mAP (0.5) by 4.2%
compared to YOLOvS5s. The addition of Ghost Net to the
trunk of YOLOVSs can increase the mAP (0.5) by 7.1%, and
the precision and recall increase significantly. The using of
the CIoU Loss function can increase the mAP (0.5) by 2.9%.

Additionally, by adding SAHI and MCA to the original
YOLOVS5s, the mAP (0.5) is enhanced by 7%. Then adding
the Ghost Net can increase the mAP (0.5) by 6.2%. When
all improvement strategies were applied simultaneously,
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mAP (0.5) is improved by 9.3%, mAP (0.5:0.95) is increased
by 2%, precision is increased by 8.3%, and recall is increased
by 9.4% compared to the YOLOVS5s, demonstrating the supe-
riority of the proposedYOLOvSs FMG.

In order to visually evaluate the detection effect of our
method, we conducted a performance comparison between
the original YOLOVS5s and the improved method, and a subset
of images was randomly sampled from the dataset for detec-
tion. As shown in FIGURE 15, in environments with low
light conditions, the YOLOv5s model occasionally resulted
in missed detections. For example, in the dim environment
on the left in FIGURE 15 (a), the YOLOVS5s failed to detect
the pedestrian, leaving him undetected. Only one pedestrian
with light interference in the upper right corner was success-
fully detected, and the other was missed. In comparison, our
method can detect targets that were missed by the YOLOVS5s
model, which is shown in FIGURE 15 (b). As shown in
FIGURE 16, during foggy weather, the visibility of the road
environment is low, resulting in a significant decrease in
the overall detection accuracy. As shown in FIGURE 16(a),
the YOLOvSs model failed to detect vehicle on the left
and the vehicle obstructed by other vehicles in the middle,
and even two pedestrians on the right have been mistakenly
detected as one pedestrian. In contrast, all the targets are
correctly detected by our method in FIGURE 16(b). The
proposed YOLOv5s FMG algorithm effectively addresses
the challenge of detecting small targets in low visibility
conditions. It significantly reduces missed detections and
minimizes errors, leading to more accurate and reliable target
detection results.

IV. CONCLUSION

In this paper, to address the challenges of small target detec-
tion in low visibility conditions, we propose YOLOv5s FMG
to improve the efficiency and accuracy of detection. The main
contributions of this paper include: (1) SAHI is incorporated
at the input side, allowing for better adaptation to target
characteristics and improved detection performance. (2) The
MCA module is integrated into the Neck of the YOLOvS5s
FMG model, enhancing the model’s ability to detect small
targets in low visibility scenarios. (3) The network employs a
convolutional network for feature extraction instead of using
fully connected layers, and adopts the lightweight Ghost Bot-
tleneck module as a substitute for the traditional bottleneck
structure. (4) The CIoU loss function is adopted to improve
the accuracy and localization.

We created a dataset consisting of various low-visibility
scenes for model training and performance testing. The
experimental results demonstrate that, when compared to the
original YOLOVS5s, our proposed method exhibits significant
improvements. Specifically, the mAP (0.5) has increased by
9.3%, while the FPS has shown a remarkable boost of 41.8%.
Additionally, the number of parameters has been reduced by
18.5%, resulting in a substantial decrease in the model size by
41.9%. Meanwhile, compared with other models proposed in
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recent years, the YOLOvSs FMG has advantages in terms of
mAP, detecting speed and model size.

However, the proposed method in this article also has some
limitations:

(1) When there is an overlap between tiny light sources
and the detection targets, it can lead to a decrease in the
detection accuracy of the algorithm. Further research and
development are necessary to develop techniques that can
effectively differentiate between tiny light sources and actual
detection targets.

(2) The images used in this paper were carefully selected
and may differ from real-world scenarios. Therefore, it is
important to conduct further testing and adjustment of the
algorithm in real-world scenes to obtain more accurate and
reliable results.
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